Search results

1 – 10 of 10
Article
Publication date: 30 April 2020

Hongbin Liu, Hu Ren, Hanfeng Gu, Fei Gao and Guangwen Yang

The purpose of this paper is to provide an automatic parallelization toolkit for unstructured mesh-based computation. Among all kinds of mesh types, unstructured meshes are…

Abstract

Purpose

The purpose of this paper is to provide an automatic parallelization toolkit for unstructured mesh-based computation. Among all kinds of mesh types, unstructured meshes are dominant in engineering simulation scenarios and play an essential role in scientific computations for their geometrical flexibility. However, the high-fidelity applications based on unstructured grids are still time-consuming, no matter for programming or running.

Design/methodology/approach

This study develops an efficient UNstructured Acceleration Toolkit (UNAT), which provides friendly high-level programming interfaces and elaborates lower level implementation on the target hardware to get nearly hand-optimized performance. At the present state, two efficient strategies, a multi-level blocks method and a row-subsections method, are designed and implemented on Sunway architecture. Random memory access and write–write conflict issues of unstructured meshes have been handled by partitioning, coloring and other hardware-specific techniques. Moreover, a data-reuse mechanism is developed to increase the computational intensity and alleviate the memory bandwidth bottleneck.

Findings

The authors select sparse matrix-vector multiplication as a performance benchmark of UNAT across different data layouts and different matrix formats. Experimental results show that the speed-ups reach up to 26× compared to single management processing element, and the utilization ratio tests indicate the capability of achieving nearly hand-optimized performance. Finally, the authors adopt UNAT to accelerate a well-tuned unstructured solver and obtain speed-ups of 19× and 10× on average for main kernels and overall solver, respectively.

Originality/value

The authors design an unstructured mesh toolkit, UNAT, to link the hardware and numerical algorithm, and then, engineers can focus on the algorithms and solvers rather than the parallel implementation. For the many-core processor SW26010 of the fastest supercomputer in China, UNAT yields up to 26× speed-ups and achieves nearly hand-optimized performance.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 21 December 2023

Zhaoyang Wang, Bing Wu, Jiaqing Huang, Yuqi Yang and Guangwen Xiao

The purpose of this study is to develop a transient wheel–rail rolling contact model to primarily investigate the rail damage under wet condition when the train passes through the…

Abstract

Purpose

The purpose of this study is to develop a transient wheel–rail rolling contact model to primarily investigate the rail damage under wet condition when the train passes through the welded joints.

Design/methodology/approach

The impact force induced by welded joints is obtained through vehicle–track coupling dynamics. The normal and tangential wheel–rail contact pressures were solved by elastohydrodynamic lubrication (EHL) theory and simplified third-body layer theory, respectively. Then, the obtained tangential pressure and normal pressure were applied to the finite element model as moving loads, simulating cyclic loading. Finally, the shakedown map and critical plane method were used to predict rolling contact fatigue (RCF) and the initiation of fatigue cracks.

Findings

The results indicate that RCF will occur and fatigue cracks are more prone to appear on the subsurface of the rail, specifically around 2.7 mm below the rail surface in the vicinity of the welded joint and its heat-affected zone.

Originality/value

The cosimulation of numerical model and finite element model was implemented. The influence of surface roughness and fluids was considered. In this model, the normal and tangential wheel–rail contact pressure, the stress and strain and the rail fatigue cracks were obtained under a rail-welded joint excitation.

Details

Industrial Lubrication and Tribology, vol. 76 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 3 February 2023

Arad Azizi, Fatemeh Hejripour, Jacob A. Goodman, Piyush A. Kulkarni, Xiaobo Chen, Guangwen Zhou and Scott N. Schiffres

AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the…

Abstract

Purpose

AlSi10Mg alloy is commonly used in laser powder bed fusion due to its printability, relatively high thermal conductivity, low density and good mechanical properties. However, the thermal conductivity of as-built materials as a function of processing (energy density, laser power, laser scanning speed, support structure) and build orientation, are not well explored in the literature. This study aims to elucidate the relationship between processing, microstructure, and thermal conductivity.

Design/methodology/approach

The thermal conductivity of laser powder bed fusion (L-PBF) AlSi10Mg samples are investigated by the flash diffusivity and frequency domain thermoreflectance (FDTR) techniques. Thermal conductivities are linked to the microstructure of L-PBF AlSi10Mg, which changes with processing conditions. The through-plane exceeded the in-plane thermal conductivity for all energy densities. A co-located thermal conductivity map by frequency domain thermoreflectance (FDTR) and crystallographic grain orientation map by electron backscattered diffraction (EBSD) was used to investigate the effect of microstructure on thermal conductivity.

Findings

The highest through-plane thermal conductivity (136 ± 2 W/m-K) was achieved at 59 J/mm3 and exceeded the values reported previously. The in-plane thermal conductivity peaked at 117 ± 2 W/m-K at 50 J/mm3. The trend of thermal conductivity reducing with energy density at similar porosity was primarily due to the reduced grain size producing more Al-Si interfaces that pose thermal resistance. At these interfaces, thermal energy must convert from electrons in the aluminum to phonons in the silicon. The co-located thermal conductivity and crystallographic grain orientation maps confirmed that larger colonies of columnar grains have higher thermal conductivity compared to smaller columnar grains.

Practical implications

The thermal properties of AlSi10Mg are crucial to heat transfer applications including additively manufactured heatsinks, cold plates, vapor chambers, heat pipes, enclosures and heat exchangers. Additionally, thermal-based nondestructive testing methods require these properties for applications such as defect detection and simulation of L-PBF processes. Industrial standards for L-PBF processes and components can use the data for thermal applications.

Originality/value

To the best of the authors’ knowledge, this paper is the first to make coupled thermal conductivity maps that were matched to microstructure for L-PBF AlSi10Mg aluminum alloy. This was achieved by a unique in-house thermal conductivity mapping setup and relating the data to local SEM EBSD maps. This provides the first conclusive proof that larger grain sizes can achieve higher thermal conductivity for this processing method and material system. This study also shows that control of the solidification can result in higher thermal conductivity. It was also the first to find that the build substrate (with or without support) has a large effect on thermal conductivity.

Article
Publication date: 18 January 2021

Liang Zhao, Wen Tao, Guangwen Wang, Lida Wang and Guichang Liu

The paper aims to develop an intelligent anti-corrosion expert system based on browser/server (B/S) architecture to realize an intelligent corrosion management system.

Abstract

Purpose

The paper aims to develop an intelligent anti-corrosion expert system based on browser/server (B/S) architecture to realize an intelligent corrosion management system.

Design/methodology/approach

The system is based on Java EE technology platform and model view controller (MVC) three-tier architecture development model. The authors used an extended three-dimensional interpolation model to predict corrosion rate, and the model is verified by cross-validation method. Additionally, MySQL is used to realize comprehensive data management.

Findings

The proposed anti-corrosion system thoroughly considers a full use of corrosion data, relevant corrosion prediction and efficient corrosion management in one system. Therefore, this system can achieve an accurate prediction of corrosion rate, risk evaluation, risk alert and expert suggestion for equipment in petrochemical plants.

Originality/value

Collectively, this present study has important ramifications for the more efficient and scientific management of corrosion data in enterprises and experts’ guidance in controlling corrosion status. At the same time, the digital management of corrosion data can provide a data support for related theoretical researches in corrosion field, and the intelligent system also offers examples in other fields to improve system by adding intelligence means.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 February 2018

Mengru Tu, Ming K. Lim and Ming-Fang Yang

The lack of reference architecture for Internet of Things (IoT) modeling impedes the successful design and implementation of an IoT-based production logistics and supply chain…

4717

Abstract

Purpose

The lack of reference architecture for Internet of Things (IoT) modeling impedes the successful design and implementation of an IoT-based production logistics and supply chain system (PLSCS). The authors present this study in two parts to address this research issue. Part A proposes a unified IoT modeling framework to model the dynamics of distributed IoT processes, IoT devices, and IoT objects. The models of the framework can be leveraged to support the implementation architecture of an IoT-based PLSCS. The second part (Part B) of this study extends the discussion of implementation architecture proposed in Part A. Part B presents an IoT-based cyber-physical system framework and evaluates its performance. The paper aims to discuss this issue.

Design/methodology/approach

This paper adopts a design research approach, using ontology, process analysis, and Petri net modeling scheme to support IoT system modeling.

Findings

The proposed IoT system-modeling approach reduces the complexity of system development and increases system portability for IoT-based PLSCS. The IoT design models generated from the modeling can also be transformed to implementation logic.

Practical implications

The proposed IoT system-modeling framework and the implementation architecture can be used to develop an IoT-based PLSCS in the real industrial setting. The proposed modeling methods can be applied to many discrete manufacturing industries.

Originality/value

The IoT modeling framework developed in this study is the first in this field which decomposes IoT system design into ontology-, process-, and object-modeling layers. A novel implementation architecture also proposed to transform above IoT system design models into implementation logic. The developed prototype system can track product and different parts of the same product along a manufacturing supply chain.

Details

Industrial Management & Data Systems, vol. 118 no. 1
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 22 November 2011

Rong Kong, Calum G. Turvey, Guangwen He, Jiujie Ma and Patrick Meagher

China frequently suffers from weather‐related natural disasters and weather risk is recognized as a source of wide‐spread systemic risk throughout large swaths of China. During…

1115

Abstract

Purpose

China frequently suffers from weather‐related natural disasters and weather risk is recognized as a source of wide‐spread systemic risk throughout large swaths of China. During these periods farmers' crops are at risk and for a largely poor population few can afford the turmoil to livelihoods that goes along with drought. The purpose of this paper is to investigate the willingness of Shaanxi and Gansu farmers to purchase weather insurance.

Design/methodology/approach

This paper is based on surveyed results of 890 farm households in Shaanxi and Gansu provinces. The survey was designed specifically to extract willingness to pay for weather insurance. Factor affecting willingness to pay are explained using linear regression.

Findings

The authors find strong evidence that the demand for drought insurance is downward sloping and also believe from the analysis that the demand is fairly elastic. This suggests that price matters and the results suggest that in order for wide spread adoption of weather insurance farmers will require a substantial premium, perhaps in the order of 80 per cent, as is being applied to current crop insurance initiatives. The authors find, as expected, that crop producers would be willing to pay more for insurance than livestock producers, but also find, as one would expect, that the key indicator is risk. Using a Pert distribution, the authors constructed from information gathered from farmers the expected values and standard deviations of gross revenues and yields of the most prominent crop and constructed the coefficient of variation. It was found in both cases that the higher the CV the greater the willingness to pay.

Originality/value

The authors believe that this is the first willingness‐to‐pay study of weather insurance uptake in China. The authors used a unique “experimental” design and investigation technique to determine weather insurance demand.

Details

China Agricultural Economic Review, vol. 3 no. 4
Type: Research Article
ISSN: 1756-137X

Keywords

Content available

Abstract

Details

Agricultural Finance Review, vol. 74 no. 2
Type: Research Article
ISSN: 0002-1466

Article
Publication date: 12 February 2018

Mengru Tu

The Internet of Things (IoT) envisions a global infrastructure of networked physical objects that render radical transparency to supply chain management. Despite the perceived…

14418

Abstract

Purpose

The Internet of Things (IoT) envisions a global infrastructure of networked physical objects that render radical transparency to supply chain management. Despite the perceived advantages of IoT, industry has still not widely adopted IoT-enabled logistics and supply chain management. The purpose of this paper is to understand the incentives and concerns behind firms’ decisions to adopt IoT, explore the determinant factors affecting IoT adoption in logistics and supply chain management.

Design/methodology/approach

This study uses mixed methods research to explore the determinants of IoT adoption intention in logistics and supply chain management. Qualitative analysis using the Grounded Theory methodology reveals the underlying perceptions regarding logistic innovation with IoT. Quantitative hypotheses are then developed based on qualitative investigation and adoption literature. Survey data were collected from the managerial staff of Taiwanese firms across various industries. Structural equation modeling with partial least square is used for data analysis.

Findings

The results of the qualitative study identify uncertainties and issues regarding firms’ intention to accept or reject IoT technology in logistics and supply chain management, including the benefit and cost aspects of adopting IoT, uncertainties about the trustworthiness of IoT technology, and the external motivating force to embrace IoT. The resulting quantitative model shows that perceived benefits, perceived costs, and external pressure are significant determinants of IoT adoption intention, while technology trust is not. However, technology trust does indirectly influence IoT adoption intention through perceived benefits.

Practical implications

The empirical findings of this study provide some guidelines for logistics and supply chain managers to evaluate IoT adoption in their firms. Likewise, IoT solution providers can also benefit from this study by improving their solutions to mitigate the IoT adoption concerns addressed herein.

Originality/value

This paper is among the first known to examine IoT adoption intention in logistics and supply chain management using mixed methods research. The mixed methods approach offers a better insight in understanding incentives behind firms’ decisions to adopt IoT vs the use of either a qualitative or quantitative method alone.

Details

The International Journal of Logistics Management, vol. 29 no. 1
Type: Research Article
ISSN: 0957-4093

Keywords

Article
Publication date: 2 August 2013

M. Ilangkumaran, V. Sasirekha, L. Anojkumar, G. Sakthivel, M. Boopathi Raja, T. Ruban Sundara Raj, CNS. Siddhartha, P. Nizamuddin and S. Praveen Kumar

This paper aims to describe an application of hybrid Multi Criteria Decision Making (MCDM) technique for the selection of wastewater treatment (WWT) technology for treating…

Abstract

Purpose

This paper aims to describe an application of hybrid Multi Criteria Decision Making (MCDM) technique for the selection of wastewater treatment (WWT) technology for treating wastewater.

Design/methodology/approach

The proposed approach is based on Analytical Hierarchy Process (AHP) under fuzzy environment, Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) and hierarchy Grey Relation Analysis (GRA) techniques. Two models are proposed to evaluate the best WWT. The first model, Fuzzy Analytical Hierarchy Process (FAHP) is integrated with Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE) technique. The second model, FAHP is integrated with hierarchy Grey Relation Analysis (GRA) technique. The Fuzzy Analytical Hierarchy Process (FAHP) is used to determine the weights of criteria and then ranking of the WWT technology is determined by PROMETHEE and GRA.

Findings

An efficient pair‐wise comparison process and ranking of alternatives can be achieved for WWT technology selection through the integration of FAHP and PROMETHEE, FAHP and GRA.

Originality/value

The paper highlights a new insight into MCDM techniques to select an optimum WWT technology selection for the paper manufacturing industry.

Details

Management of Environmental Quality: An International Journal, vol. 24 no. 5
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 4 September 2017

Zhihao Zheng, Yang Gao, Yijing Zhang and Shida Henneberry

The purpose of this paper is to analyze changes in consumers’ knowledge and acceptance of genetically modified (GM) foods over the past decade and identifies the determinants in…

Abstract

Purpose

The purpose of this paper is to analyze changes in consumers’ knowledge and acceptance of genetically modified (GM) foods over the past decade and identifies the determinants in the consumer attitudes toward GM foods in urban China.

Design/methodology/approach

The data used in this study were collected from 952 urban consumers in 2013 in 15 provinces. The ordinal logit model was chosen to identify the determinants in the consumers’ subjective knowledge and acceptance of GM foods.

Findings

Results show that the consumers’ awareness of GM foods, biotech knowledge, and subjective knowledge improved significantly, while the acceptance rate toward GM foods declined considerably from 2002 to 2013. Moreover, the consumers’ subjective knowledge of GM foods had a significantly negative impact on their acceptance rate of GM foods. Finally, the media coverage with the “event of Golden rice in 2012” as a proxy helped consumers in shaping their negative perceptions toward GM foods, suggesting that the media coverage was one of major factors in leading to the low acceptance rate of GM foods in urban China.

Originality/value

The findings of previous studies conducted in the early 2000s might not reflect current Chinese consumer attitudes because the public opinion toward GM foods in modern China has considerably changed. This study thus filled in the void by updating estimates on consumer attitudes toward GM foods and by underlining the factors that have led to the changes in consumer attitudes, using a mass survey covering Chinese urban consumers in 15 provinces in 2013.

Details

China Agricultural Economic Review, vol. 9 no. 3
Type: Research Article
ISSN: 1756-137X

Keywords

1 – 10 of 10